亚洲美女尤物影院,美女高潮在线观看,最新国产精品拍自在线播放,国产在视频线精品视频www666

名課堂 - 企業(yè)管理培訓(xùn)網(wǎng)聯(lián)系方式

聯(lián)系電話:400-8228-121

值班手機(jī):18971071887

Email:Service@mingketang.com

企業(yè)管理培訓(xùn)分類導(dǎo)航

企業(yè)管理培訓(xùn)公開課計(jì)劃

企業(yè)培訓(xùn)公開課日歷

研發(fā)管理培訓(xùn)公開課

研發(fā)管理培訓(xùn)內(nèi)訓(xùn)課程

熱門企業(yè)管理培訓(xùn)關(guān)鍵字

您所在的位置:名課堂>>公開課>>研發(fā)管理培訓(xùn)公開課

Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)

【課程編號(hào)】:MKT021092

【課程名稱】:

Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)

【課件下載】:點(diǎn)擊下載課程綱要Word版

【所屬類別】:研發(fā)管理培訓(xùn)

【時(shí)間安排】:2026年06月24日 到 2026年06月27日7800元/人

2025年10月14日 到 2025年10月17日7800元/人

2025年06月04日 到 2025年06月07日7800元/人

【授課城市】:北京

【課程說明】:如有需求,我們可以提供Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)相關(guān)內(nèi)訓(xùn)

【其它城市安排】:珠海 蘇州 成都 杭州 深圳 上海 太原 天津 長沙 中山 福州 重慶 惠州 廈門 廣州 大連 東莞 長春 青島

【課程關(guān)鍵字】:北京Python培訓(xùn)

我要報(bào)名

咨詢電話:
手  機(jī): 郵箱:
課程目標(biāo)

1.每個(gè)算法模塊按照“原理講解→分析數(shù)據(jù)→自己動(dòng)手實(shí)現(xiàn)→特征與調(diào)參”的順序。

2.“Python數(shù)據(jù)清洗和特征提取”,提升學(xué)習(xí)深度、降低學(xué)習(xí)坡度。

3.增加網(wǎng)絡(luò)爬蟲的原理和編寫,從獲取數(shù)據(jù)開始,重視將實(shí)踐問題轉(zhuǎn)換成實(shí)際模型的能力,分享工作中的實(shí)際案例或Kaggle案例:廣告銷量分析、環(huán)境數(shù)據(jù)異常檢測和分析、數(shù)字圖像手寫體識(shí)別、Titanic乘客存活率預(yù)測、用戶-電影推薦、真實(shí)新聞組數(shù)據(jù)主題分析、中文分詞、股票數(shù)據(jù)特征分析等。

4.強(qiáng)化矩陣運(yùn)算、概率論、數(shù)理統(tǒng)計(jì)的知識(shí)運(yùn)用,掌握機(jī)器學(xué)習(xí)根本。

5.闡述機(jī)器學(xué)習(xí)原理,提供配套源碼和數(shù)據(jù)。

6.以直觀解釋,增強(qiáng)感性理解。

7.對(duì)比不同的特征選擇帶來的預(yù)測效果差異。

8.重視項(xiàng)目實(shí)踐,重視落地。思考不同算法之間的區(qū)別和聯(lián)系,提高在實(shí)際工作中選擇算法的能力。

9.涉及和講解的部分Python庫有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn。

課程目標(biāo)

本課程特點(diǎn)是從數(shù)學(xué)層面推導(dǎo)最經(jīng)典的機(jī)器學(xué)習(xí)算法,以及每種算法的示例和代碼實(shí)現(xiàn)(Python)、如何做算法的參數(shù)調(diào)試、以實(shí)際應(yīng)用案例分析各種算法的選擇等。

培訓(xùn)對(duì)象

大數(shù)據(jù)分析應(yīng)用開發(fā)工程師、大數(shù)據(jù)分析項(xiàng)目的規(guī)劃咨詢管理人員、大數(shù)據(jù)分析項(xiàng)目的IT項(xiàng)目高管人員、大數(shù)據(jù)分析與挖掘處理算法應(yīng)用工程師、大數(shù)據(jù)分析集群運(yùn)維工程師、大數(shù)據(jù)分析項(xiàng)目的售前和售后技術(shù)支持服務(wù)人員

課程大綱

模塊一 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)1 - 數(shù)學(xué)分析

1. 機(jī)器學(xué)習(xí)的一般方法和橫向比較

2. 數(shù)學(xué)是有用的:以SVD為例

3. 機(jī)器學(xué)習(xí)的角度看數(shù)學(xué)

4. 復(fù)習(xí)數(shù)學(xué)分析

5. 直觀解釋常數(shù)e

6. 導(dǎo)數(shù)/梯度

7. 隨機(jī)梯度下降

8. Taylor展式的落地應(yīng)用

9. gini系數(shù)

10. 凸函數(shù)

11. Jensen不等式

12. 組合數(shù)與信息熵的關(guān)系

模塊二 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)2 - 概率論與貝葉斯先驗(yàn)

1. 概率論基礎(chǔ)

2. 古典概型

3. 貝葉斯公式

4. 先驗(yàn)分布/后驗(yàn)分布/共軛分布

5. 常見概率分布

6. 泊松分布和指數(shù)分布的物理意義

7. 協(xié)方差(矩陣)和相關(guān)系數(shù)

8. 獨(dú)立和不相關(guān)

9. 大數(shù)定律和中心極限定理的實(shí)踐意義

10. 深刻理解最大似然估計(jì)MLE和最大后驗(yàn)估計(jì)MAP

11. 過擬合的數(shù)學(xué)原理與解決方案

模塊三 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)3 - 矩陣和線性代數(shù)

1. 線性代數(shù)在數(shù)學(xué)科學(xué)中的地位

2. 馬爾科夫模型

3. 矩陣乘法的直觀表達(dá)

4. 狀態(tài)轉(zhuǎn)移矩陣

5. 矩陣和向量組

6. 特征向量的思考和實(shí)踐計(jì)算

7. QR分解

8. 對(duì)稱陣、正交陣、正定陣

9. 數(shù)據(jù)白化及其應(yīng)用

10. 向量對(duì)向量求導(dǎo)

11. 標(biāo)量對(duì)向量求導(dǎo)

12. 標(biāo)量對(duì)矩陣求導(dǎo)工作機(jī)制

模塊四 Python基礎(chǔ)1 - Python及其數(shù)學(xué)庫

1. 解釋器Python2.7與IDE:Anaconda/Pycharm

2. Python基礎(chǔ):列表/元組/字典/類/文件

3. Taylor展式的代碼實(shí)現(xiàn)

4. numpy/scipy/matplotlib/panda的介紹和典型使用

5. 多元高斯分布

6. 泊松分布、冪律分布

7. 典型圖像處理

8. 蝴蝶效應(yīng)

9. 分形與可視化

模塊五 Python基礎(chǔ)2 - 機(jī)器學(xué)習(xí)庫

1. scikit-learn的介紹和典型使用

2. 損失函數(shù)的繪制

3. 多種數(shù)學(xué)曲線

4. 多項(xiàng)式擬合

5. 快速傅里葉變換FFT

6. 奇異值分解SVD

7. Soble/Prewitt/Laplacian算子與卷積網(wǎng)絡(luò)

8. 卷積與(指數(shù))移動(dòng)平均線

9. 股票數(shù)據(jù)分析

模塊六 Python基礎(chǔ)3 - 數(shù)據(jù)清洗和特征選擇

1. 實(shí)際生產(chǎn)問題中算法和特征的關(guān)系

2. 股票數(shù)據(jù)的特征提取和應(yīng)用

3. 一致性檢驗(yàn)

4. 缺失數(shù)據(jù)的處理

5. 環(huán)境數(shù)據(jù)異常檢測和分析

6. 模糊數(shù)據(jù)查詢和數(shù)據(jù)校正方法、算法、應(yīng)用

7. 樸素貝葉斯用于鳶尾花數(shù)據(jù)

8. GaussianNB/MultinomialNB/BernoulliNB

9. 樸素貝葉斯用于18000+篇/Sogou新聞文本的分類

模塊七 回歸

1. 線性回歸

2. Logistic/Softmax回歸

3. 廣義線性回歸

4. L1/L2正則化

5. Ridge與LASSO

6. Elastic Net

7. 梯度下降算法:BGD與SGD

8. 特征選擇與過擬合

模塊八 Logistic回歸

1. Sigmoid函數(shù)的直觀解釋

2. Softmax回歸的概念源頭

3. Logistic/Softmax回歸

4. 最大熵模型

5. K-L散度

6. 損失函數(shù)

7. Softmax回歸的實(shí)現(xiàn)與調(diào)參

模塊九 回歸實(shí)踐

1. 機(jī)器學(xué)習(xí)sklearn庫介紹

2. 線性回歸代碼實(shí)現(xiàn)和調(diào)參

3. Softmax回歸代碼實(shí)現(xiàn)和調(diào)參

4. Ridge回歸/LASSO/Elastic Net

5. Logistic/Softmax回歸

6. 廣告投入與銷售額回歸分析

7. 鳶尾花數(shù)據(jù)集的分類

8. 交叉驗(yàn)證

9. 數(shù)據(jù)可視化

模塊十 決策樹和隨機(jī)森林

1. 熵、聯(lián)合熵、條件熵、KL散度、互信息

2. 最大似然估計(jì)與最大熵模型

3. ID3、C4.5、CART詳解

4. 決策樹的正則化

5. 預(yù)剪枝和后剪枝

6. Bagging

7. 隨機(jī)森林

8. 不平衡數(shù)據(jù)集的處理

9. 利用隨機(jī)森林做特征選擇

10. 使用隨機(jī)森林計(jì)算樣本相似度

11. 數(shù)據(jù)異常值檢測

模塊十一 隨機(jī)森林實(shí)踐

1. 隨機(jī)森林與特征選擇

2. 決策樹應(yīng)用于回歸

3. 多標(biāo)記的決策樹回歸

4. 決策樹和隨機(jī)森林的可視化

5. 葡萄酒數(shù)據(jù)集的決策樹/隨機(jī)森林分類

6. 波士頓房價(jià)預(yù)測

模塊十二 提升

1. 提升為什么有效

2. 梯度提升決策樹GBDT

3. XGBoost算法詳解

4. Adaboost算法

5. 加法模型與指數(shù)損失

模塊十三 提升實(shí)踐

1. Adaboost用于蘑菇數(shù)據(jù)分類

2. Adaboost與隨機(jī)森林的比較

3. XGBoost庫介紹

4. Taylor展式與學(xué)習(xí)算法

5. KAGGLE簡介

6. 泰坦尼克乘客存活率估計(jì)

模塊十四 SVM

1. 線性可分支持向量機(jī)

2. 軟間隔的改進(jìn)

3. 損失函數(shù)的理解

4. 核函數(shù)的原理和選擇

5. SMO算法

6. 支持向量回歸SVR

模塊十五 SVM實(shí)踐

1. libSVM代碼庫介紹

2. 原始數(shù)據(jù)和特征提取

3. 葡萄酒數(shù)據(jù)分類

4. 數(shù)字圖像的手寫體識(shí)別

5. SVR用于時(shí)間序列曲線預(yù)測

6. SVM、Logistic回歸、隨機(jī)森林三者的橫向比較

模塊十六 聚類(一)

1. 各種相似度度量及其相互關(guān)系

2. Jaccard相似度和準(zhǔn)確率、召回率

3. Pearson相關(guān)系數(shù)與余弦相似度

4. K-means與K-Medoids及變種

5. AP算法(Sci07)/LPA算法及其應(yīng)用

模塊十七 聚類(二)

1. 密度聚類DBSCAN/DensityPeak(Sci14)

2. DensityPeak(Sci14)

3. 譜聚類SC

4. 聚類評(píng)價(jià)AMI/ARI/Silhouette

5. LPA算法及其應(yīng)用

模塊十八 聚類實(shí)踐

1. K-Means++算法原理和實(shí)現(xiàn)

2. 向量量化VQ及圖像近似

3. 并查集的實(shí)踐應(yīng)用

4. 密度聚類的代碼實(shí)現(xiàn)

5. 譜聚類用于圖片分割

模塊十九 EM算法

1. 最大似然估計(jì)

2. Jensen不等式

3. 樸素理解EM算法

4. 精確推導(dǎo)EM算法

5. EM算法的深入理解

6. 混合高斯分布

7. 主題模型pLSA

模塊二十 EM算法實(shí)踐

1. 多元高斯分布的EM實(shí)現(xiàn)

2. 分類結(jié)果的數(shù)據(jù)可視化

3. EM與聚類的比較

4. Dirichlet過程EM

5. 三維及等高線等圖件的繪制

6. 主題模型pLSA與EM算法

模塊二十一 主題模型LDA

1. 貝葉斯學(xué)派的模型認(rèn)識(shí)

2. Beta分布與二項(xiàng)分布

3. 共軛先驗(yàn)分布

4. Dirichlet分布

5. Laplace平滑

6. Gibbs采樣詳解

模塊二十二 LDA實(shí)踐

1. 網(wǎng)絡(luò)爬蟲的原理和代碼實(shí)現(xiàn)

2. 停止詞和高頻詞

3. 動(dòng)手自己實(shí)現(xiàn)LDA

4. LDA開源包的使用和過程分析

5. Metropolis-Hastings算法

6. MCMC

7. LDA與word2vec的比較

8. TextRank算法與實(shí)踐

模塊二十三 隱馬爾科夫模型HMM

1. 概率計(jì)算問題

2. 前向/后向算法

3. HMM的參數(shù)學(xué)習(xí)

4. Baum-Welch算法詳解

5. Viterbi算法詳解

6. 隱馬爾科夫模型的應(yīng)用優(yōu)劣比較

模塊二十四 HMM實(shí)踐

1. 動(dòng)手自己實(shí)現(xiàn)HMM用于中文分詞

2. 多個(gè)語言分詞開源包的使用和過程分析

3. 文件數(shù)據(jù)格式UFT-8、Unicode

4. 停止詞和標(biāo)點(diǎn)符號(hào)對(duì)分詞的影響

5. 前向后向算法計(jì)算概率溢出的解決方案

6. 發(fā)現(xiàn)新詞和分詞效果分析

7. 高斯混合模型HMM

8. GMM-HMM用于股票數(shù)據(jù)特征提取

模塊二十五 課堂提問與互動(dòng)討論

張老師

張老師:阿里大數(shù)據(jù)高級(jí)專家,國內(nèi)資深的Spark、Hadoop技術(shù)專家、虛擬化專家,對(duì)HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生態(tài)系統(tǒng)中的技術(shù)進(jìn)行了多年的深入的研究,更主要的是這些技術(shù)在大量的實(shí)際項(xiàng)目中得到廣泛的應(yīng)用,因此在Hadoop開發(fā)和運(yùn)維方面積累了豐富的項(xiàng)目實(shí)施經(jīng)驗(yàn)。近年主要典型的項(xiàng)目有:某電信集團(tuán)網(wǎng)絡(luò)優(yōu)化、中國移動(dòng)某省移動(dòng)公司請(qǐng)賬單系統(tǒng)和某省移動(dòng)詳單實(shí)時(shí)查詢系統(tǒng)、中國銀聯(lián)大數(shù)據(jù)數(shù)據(jù)票據(jù)詳單平臺(tái)、某大型銀行大數(shù)據(jù)記錄系統(tǒng)、某大型通信運(yùn)營商全國用戶上網(wǎng)記錄、某省交通部門違章系統(tǒng)、某區(qū)域醫(yī)療大數(shù)據(jù)應(yīng)用項(xiàng)目、互聯(lián)網(wǎng)公共數(shù)據(jù)大云(DAAS)和構(gòu)建游戲云(Web Game Daas)平臺(tái)項(xiàng)目等。

我要報(bào)名

在線報(bào)名:Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)(北京)

亚洲美女尤物影院,美女高潮在线观看,最新国产精品拍自在线播放,国产在视频线精品视频www666

wwww国产精品欧美| 国产成人av福利| 亚洲男人的天堂一区二区| 久久er99热精品一区二区| 成人中文字幕在线| 中文字幕精品综合| 国产精品美女久久久久久久久| 国产精品综合二区| 韩国成人在线视频| 日产欧产美韩系列久久99| 同产精品九九九| 成人午夜电影小说| 亚洲精选免费视频| 日本道精品一区二区三区| 伊人一区二区三区| 欧美亚洲动漫精品| 亚洲一级不卡视频| 亚洲乱码一区二区三区在线观看| jlzzjlzz亚洲女人18| 国产美女一区二区| 黄色资源网久久资源365| 日韩激情视频网站| 日本欧美韩国一区三区| 另类的小说在线视频另类成人小视频在线| av高清不卡在线| 亚洲女同女同女同女同女同69| 欧美日韩一区二区三区免费看| 欧美吻胸吃奶大尺度电影| 亚洲一区精品在线| 国产精品三级在线观看| 狠狠色丁香久久婷婷综合_中| 精品久久久三级丝袜| 日韩免费一区二区三区在线播放| 成人三级伦理片| 成人欧美一区二区三区在线播放| 欧美一区二区三区在线视频| 日本亚洲免费观看| 欧美性色黄大片| 在线视频一区二区免费| 麻豆精品一区二区| kk眼镜猥琐国模调教系列一区二区| 色综合天天性综合| 国产一区二区看久久| 亚洲.国产.中文慕字在线| 99re热视频精品| 337p粉嫩大胆色噜噜噜噜亚洲| 欧美在线看片a免费观看| 国产精品久久久久久久久动漫| 亚洲图片欧美激情| 在线电影欧美成精品| 麻豆久久久久久久| 亚洲国产精品欧美一二99| 5858s免费视频成人| 精品久久久久香蕉网| 另类专区欧美蜜桃臀第一页| 久久久久97国产精华液好用吗| 日韩欧美视频一区| 日韩和的一区二区| 日韩二区三区四区| 国产欧美精品一区| 国产麻豆精品一区二区| 奇米一区二区三区| 久久久精品免费免费| 国产成人在线免费| 91免费版pro下载短视频| 顶级嫩模精品视频在线看| 在线观看亚洲成人| 日韩国产高清影视| 99精品国产99久久久久久白柏| 国产人妖乱国产精品人妖| 久久中文娱乐网| 色999日韩国产欧美一区二区| 精品中文av资源站在线观看| 亚洲国产日韩av| 久久日韩精品一区二区五区| 色狠狠色噜噜噜综合网| 美女视频一区在线观看| 91精品久久久久久久91蜜桃| 成人看片黄a免费看在线| 国产99一区视频免费| av网站一区二区三区| 欧美日韩久久久| 日本道精品一区二区三区| 7777精品伊人久久久大香线蕉超级流畅| 国产精品69久久久久水密桃| 国产麻豆视频一区二区| 色综合久久久久综合99| 欧美丰满高潮xxxx喷水动漫| 麻豆精品在线看| 日韩美女主播在线视频一区二区三区| 一本一道综合狠狠老| 国产精品福利一区二区| 免费成人美女在线观看.| 视频一区欧美精品| 久99久精品视频免费观看| 成人国产精品免费观看动漫| 51精品国自产在线| 国产乱码精品一区二区三区忘忧草| 蜜桃视频第一区免费观看| 日韩小视频在线观看专区| 国产欧美一区二区三区在线看蜜臀| 狠狠色丁香久久婷婷综合丁香| 国产一区二区成人久久免费影院| 精品国产第一区二区三区观看体验| 在线精品亚洲一区二区不卡| 26uuu国产在线精品一区二区| 日本亚洲视频在线| 亚洲va国产天堂va久久en| 在线成人av网站| 99精品黄色片免费大全| 欧美日韩一区不卡| 亚洲欧美在线视频观看| 天天操天天综合网| 国产一区欧美一区| 成人网男人的天堂| 一区二区三区国产精华| 欧美视频中文字幕| 91精品国产色综合久久ai换脸| av一区二区久久| 日韩欧美中文一区二区| 狠狠色综合日日| 欧美色视频在线观看| 99在线热播精品免费| 亚洲综合免费观看高清完整版在线| 国产成人免费视频精品含羞草妖精| 色综合一区二区三区| 欧美国产日韩a欧美在线观看| 亚洲精品一区二区三区福利| 蜜桃精品在线观看| 日韩欧美国产wwwww| 亚洲欧美精品午睡沙发| 日韩av二区在线播放| 亚洲精品国产视频| 国产美女在线观看一区| 欧美影院一区二区三区| 18欧美亚洲精品| 精品久久久久99| 偷窥国产亚洲免费视频| 成人免费观看男女羞羞视频| 亚洲欧洲av在线| 日本人妖一区二区| 欧美一区二区三区性视频| 久久久综合视频| 亚洲综合视频网| 一本大道av伊人久久综合| 日韩电影一区二区三区四区| 亚洲不卡av一区二区三区| 麻豆精品国产91久久久久久| 成人久久久精品乱码一区二区三区| 久久综合99re88久久爱| 石原莉奈在线亚洲三区| 丁香亚洲综合激情啪啪综合| 欧美日韩亚洲综合在线| 国产乱人伦偷精品视频免下载| 懂色av中文一区二区三区| 日本视频中文字幕一区二区三区| 日韩av一区二区在线影视| 亚洲精品一线二线三线无人区| av在线一区二区| 国产精品五月天| 国产精品一区一区三区| 日韩欧美一区二区不卡| 欧美日韩久久久久久| 一区二区三区中文免费| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 欧洲av一区二区嗯嗯嗯啊| 欧美色中文字幕| 久久久国产精品不卡| 国产成人aaaa| 欧洲人成人精品| 午夜久久久久久久久| 亚洲精品一区二区三区香蕉| 精品99999| 国产成人在线观看免费网站| 亚洲综合清纯丝袜自拍| 久久久综合视频| 捆绑调教一区二区三区| 中文字幕av一区二区三区高| 欧美在线啊v一区| 精品久久国产97色综合| 337p粉嫩大胆色噜噜噜噜亚洲| 99精品欧美一区| 欧美va天堂va视频va在线| 亚洲精品一区二区在线观看| 免费观看在线色综合| 欧美日韩激情一区二区三区| 国产激情一区二区三区四区| 成人免费毛片高清视频| 99精品欧美一区二区蜜桃免费| 国产乱对白刺激视频不卡| 亚洲天堂成人在线观看| 国产视频一区二区在线观看| 亚洲国产sm捆绑调教视频| 午夜视频在线观看一区二区三区| 99国产精品久久久久久久久久| 成人午夜视频网站| 粉嫩13p一区二区三区| 国产精品天干天干在线综合| 欧美亚洲动漫精品| 国产精品一区二区91|