亚洲美女尤物影院,美女高潮在线观看,最新国产精品拍自在线播放,国产在视频线精品视频www666

名課堂 - 企業(yè)管理培訓(xùn)網(wǎng)聯(lián)系方式

聯(lián)系電話:400-8228-121

值班手機(jī):18971071887

Email:Service@mingketang.com

企業(yè)管理培訓(xùn)分類導(dǎo)航

企業(yè)管理培訓(xùn)公開課計(jì)劃

企業(yè)培訓(xùn)公開課日歷

研發(fā)管理培訓(xùn)公開課

研發(fā)管理培訓(xùn)內(nèi)訓(xùn)課程

熱門企業(yè)管理培訓(xùn)關(guān)鍵字

您所在的位置:名課堂>>公開課>>研發(fā)管理培訓(xùn)公開課

Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)

【課程編號(hào)】:MKT021093

【課程名稱】:

Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)

【課件下載】:點(diǎn)擊下載課程綱要Word版

【所屬類別】:研發(fā)管理培訓(xùn)

【時(shí)間安排】:2017年08月30日 到 2017年09月01日7800元/人

2017年06月29日 到 2017年06月30日7800元/人

【授課城市】:天津

【課程說明】:如有需求,我們可以提供Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)相關(guān)內(nèi)訓(xùn)

【其它城市安排】:珠海 蘇州 成都 杭州 北京 深圳 上海 太原 長沙 中山 福州 重慶 惠州 廈門 廣州 大連 東莞 長春 青島

【課程關(guān)鍵字】:天津Python培訓(xùn)

我要報(bào)名

咨詢電話:
手  機(jī): 郵箱:
課程目標(biāo)

1.每個(gè)算法模塊按照“原理講解→分析數(shù)據(jù)→自己動(dòng)手實(shí)現(xiàn)→特征與調(diào)參”的順序。

2.“Python數(shù)據(jù)清洗和特征提取”,提升學(xué)習(xí)深度、降低學(xué)習(xí)坡度。

3.增加網(wǎng)絡(luò)爬蟲的原理和編寫,從獲取數(shù)據(jù)開始,重視將實(shí)踐問題轉(zhuǎn)換成實(shí)際模型的能力,分享工作中的實(shí)際案例或Kaggle案例:廣告銷量分析、環(huán)境數(shù)據(jù)異常檢測(cè)和分析、數(shù)字圖像手寫體識(shí)別、Titanic乘客存活率預(yù)測(cè)、用戶-電影推薦、真實(shí)新聞組數(shù)據(jù)主題分析、中文分詞、股票數(shù)據(jù)特征分析等。

4.強(qiáng)化矩陣運(yùn)算、概率論、數(shù)理統(tǒng)計(jì)的知識(shí)運(yùn)用,掌握機(jī)器學(xué)習(xí)根本。

5.闡述機(jī)器學(xué)習(xí)原理,提供配套源碼和數(shù)據(jù)。

6.以直觀解釋,增強(qiáng)感性理解。

7.對(duì)比不同的特征選擇帶來的預(yù)測(cè)效果差異。

8.重視項(xiàng)目實(shí)踐,重視落地。思考不同算法之間的區(qū)別和聯(lián)系,提高在實(shí)際工作中選擇算法的能力。

9.涉及和講解的部分Python庫有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn。

課程目標(biāo)

本課程特點(diǎn)是從數(shù)學(xué)層面推導(dǎo)最經(jīng)典的機(jī)器學(xué)習(xí)算法,以及每種算法的示例和代碼實(shí)現(xiàn)(Python)、如何做算法的參數(shù)調(diào)試、以實(shí)際應(yīng)用案例分析各種算法的選擇等。

培訓(xùn)對(duì)象

大數(shù)據(jù)分析應(yīng)用開發(fā)工程師、大數(shù)據(jù)分析項(xiàng)目的規(guī)劃咨詢管理人員、大數(shù)據(jù)分析項(xiàng)目的IT項(xiàng)目高管人員、大數(shù)據(jù)分析與挖掘處理算法應(yīng)用工程師、大數(shù)據(jù)分析集群運(yùn)維工程師、大數(shù)據(jù)分析項(xiàng)目的售前和售后技術(shù)支持服務(wù)人員

課程大綱

模塊一 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)1 - 數(shù)學(xué)分析

1. 機(jī)器學(xué)習(xí)的一般方法和橫向比較

2. 數(shù)學(xué)是有用的:以SVD為例

3. 機(jī)器學(xué)習(xí)的角度看數(shù)學(xué)

4. 復(fù)習(xí)數(shù)學(xué)分析

5. 直觀解釋常數(shù)e

6. 導(dǎo)數(shù)/梯度

7. 隨機(jī)梯度下降

8. Taylor展式的落地應(yīng)用

9. gini系數(shù)

10. 凸函數(shù)

11. Jensen不等式

12. 組合數(shù)與信息熵的關(guān)系

模塊二 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)2 - 概率論與貝葉斯先驗(yàn)

1. 概率論基礎(chǔ)

2. 古典概型

3. 貝葉斯公式

4. 先驗(yàn)分布/后驗(yàn)分布/共軛分布

5. 常見概率分布

6. 泊松分布和指數(shù)分布的物理意義

7. 協(xié)方差(矩陣)和相關(guān)系數(shù)

8. 獨(dú)立和不相關(guān)

9. 大數(shù)定律和中心極限定理的實(shí)踐意義

10. 深刻理解最大似然估計(jì)MLE和最大后驗(yàn)估計(jì)MAP

11. 過擬合的數(shù)學(xué)原理與解決方案

模塊三 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)3 - 矩陣和線性代數(shù)

1. 線性代數(shù)在數(shù)學(xué)科學(xué)中的地位

2. 馬爾科夫模型

3. 矩陣乘法的直觀表達(dá)

4. 狀態(tài)轉(zhuǎn)移矩陣

5. 矩陣和向量組

6. 特征向量的思考和實(shí)踐計(jì)算

7. QR分解

8. 對(duì)稱陣、正交陣、正定陣

9. 數(shù)據(jù)白化及其應(yīng)用

10. 向量對(duì)向量求導(dǎo)

11. 標(biāo)量對(duì)向量求導(dǎo)

12. 標(biāo)量對(duì)矩陣求導(dǎo)工作機(jī)制

模塊四 Python基礎(chǔ)1 - Python及其數(shù)學(xué)庫

1. 解釋器Python2.7與IDE:Anaconda/Pycharm

2. Python基礎(chǔ):列表/元組/字典/類/文件

3. Taylor展式的代碼實(shí)現(xiàn)

4. numpy/scipy/matplotlib/panda的介紹和典型使用

5. 多元高斯分布

6. 泊松分布、冪律分布

7. 典型圖像處理

8. 蝴蝶效應(yīng)

9. 分形與可視化

模塊五 Python基礎(chǔ)2 - 機(jī)器學(xué)習(xí)庫

1. scikit-learn的介紹和典型使用

2. 損失函數(shù)的繪制

3. 多種數(shù)學(xué)曲線

4. 多項(xiàng)式擬合

5. 快速傅里葉變換FFT

6. 奇異值分解SVD

7. Soble/Prewitt/Laplacian算子與卷積網(wǎng)絡(luò)

8. 卷積與(指數(shù))移動(dòng)平均線

9. 股票數(shù)據(jù)分析

模塊六 Python基礎(chǔ)3 - 數(shù)據(jù)清洗和特征選擇

1. 實(shí)際生產(chǎn)問題中算法和特征的關(guān)系

2. 股票數(shù)據(jù)的特征提取和應(yīng)用

3. 一致性檢驗(yàn)

4. 缺失數(shù)據(jù)的處理

5. 環(huán)境數(shù)據(jù)異常檢測(cè)和分析

6. 模糊數(shù)據(jù)查詢和數(shù)據(jù)校正方法、算法、應(yīng)用

7. 樸素貝葉斯用于鳶尾花數(shù)據(jù)

8. GaussianNB/MultinomialNB/BernoulliNB

9. 樸素貝葉斯用于18000+篇/Sogou新聞文本的分類

模塊七 回歸

1. 線性回歸

2. Logistic/Softmax回歸

3. 廣義線性回歸

4. L1/L2正則化

5. Ridge與LASSO

6. Elastic Net

7. 梯度下降算法:BGD與SGD

8. 特征選擇與過擬合

模塊八 Logistic回歸

1. Sigmoid函數(shù)的直觀解釋

2. Softmax回歸的概念源頭

3. Logistic/Softmax回歸

4. 最大熵模型

5. K-L散度

6. 損失函數(shù)

7. Softmax回歸的實(shí)現(xiàn)與調(diào)參

模塊九 回歸實(shí)踐

1. 機(jī)器學(xué)習(xí)sklearn庫介紹

2. 線性回歸代碼實(shí)現(xiàn)和調(diào)參

3. Softmax回歸代碼實(shí)現(xiàn)和調(diào)參

4. Ridge回歸/LASSO/Elastic Net

5. Logistic/Softmax回歸

6. 廣告投入與銷售額回歸分析

7. 鳶尾花數(shù)據(jù)集的分類

8. 交叉驗(yàn)證

9. 數(shù)據(jù)可視化

模塊十 決策樹和隨機(jī)森林

1. 熵、聯(lián)合熵、條件熵、KL散度、互信息

2. 最大似然估計(jì)與最大熵模型

3. ID3、C4.5、CART詳解

4. 決策樹的正則化

5. 預(yù)剪枝和后剪枝

6. Bagging

7. 隨機(jī)森林

8. 不平衡數(shù)據(jù)集的處理

9. 利用隨機(jī)森林做特征選擇

10. 使用隨機(jī)森林計(jì)算樣本相似度

11. 數(shù)據(jù)異常值檢測(cè)

模塊十一 隨機(jī)森林實(shí)踐

1. 隨機(jī)森林與特征選擇

2. 決策樹應(yīng)用于回歸

3. 多標(biāo)記的決策樹回歸

4. 決策樹和隨機(jī)森林的可視化

5. 葡萄酒數(shù)據(jù)集的決策樹/隨機(jī)森林分類

6. 波士頓房?jī)r(jià)預(yù)測(cè)

模塊十二 提升

1. 提升為什么有效

2. 梯度提升決策樹GBDT

3. XGBoost算法詳解

4. Adaboost算法

5. 加法模型與指數(shù)損失

模塊十三 提升實(shí)踐

1. Adaboost用于蘑菇數(shù)據(jù)分類

2. Adaboost與隨機(jī)森林的比較

3. XGBoost庫介紹

4. Taylor展式與學(xué)習(xí)算法

5. KAGGLE簡(jiǎn)介

6. 泰坦尼克乘客存活率估計(jì)

模塊十四 SVM

1. 線性可分支持向量機(jī)

2. 軟間隔的改進(jìn)

3. 損失函數(shù)的理解

4. 核函數(shù)的原理和選擇

5. SMO算法

6. 支持向量回歸SVR

模塊十五 SVM實(shí)踐

1. libSVM代碼庫介紹

2. 原始數(shù)據(jù)和特征提取

3. 葡萄酒數(shù)據(jù)分類

4. 數(shù)字圖像的手寫體識(shí)別

5. SVR用于時(shí)間序列曲線預(yù)測(cè)

6. SVM、Logistic回歸、隨機(jī)森林三者的橫向比較

模塊十六 聚類(一)

1. 各種相似度度量及其相互關(guān)系

2. Jaccard相似度和準(zhǔn)確率、召回率

3. Pearson相關(guān)系數(shù)與余弦相似度

4. K-means與K-Medoids及變種

5. AP算法(Sci07)/LPA算法及其應(yīng)用

模塊十七 聚類(二)

1. 密度聚類DBSCAN/DensityPeak(Sci14)

2. DensityPeak(Sci14)

3. 譜聚類SC

4. 聚類評(píng)價(jià)AMI/ARI/Silhouette

5. LPA算法及其應(yīng)用

模塊十八 聚類實(shí)踐

1. K-Means++算法原理和實(shí)現(xiàn)

2. 向量量化VQ及圖像近似

3. 并查集的實(shí)踐應(yīng)用

4. 密度聚類的代碼實(shí)現(xiàn)

5. 譜聚類用于圖片分割

模塊十九 EM算法

1. 最大似然估計(jì)

2. Jensen不等式

3. 樸素理解EM算法

4. 精確推導(dǎo)EM算法

5. EM算法的深入理解

6. 混合高斯分布

7. 主題模型pLSA

模塊二十 EM算法實(shí)踐

1. 多元高斯分布的EM實(shí)現(xiàn)

2. 分類結(jié)果的數(shù)據(jù)可視化

3. EM與聚類的比較

4. Dirichlet過程EM

5. 三維及等高線等圖件的繪制

6. 主題模型pLSA與EM算法

模塊二十一 主題模型LDA

1. 貝葉斯學(xué)派的模型認(rèn)識(shí)

2. Beta分布與二項(xiàng)分布

3. 共軛先驗(yàn)分布

4. Dirichlet分布

5. Laplace平滑

6. Gibbs采樣詳解

模塊二十二 LDA實(shí)踐

1. 網(wǎng)絡(luò)爬蟲的原理和代碼實(shí)現(xiàn)

2. 停止詞和高頻詞

3. 動(dòng)手自己實(shí)現(xiàn)LDA

4. LDA開源包的使用和過程分析

5. Metropolis-Hastings算法

6. MCMC

7. LDA與word2vec的比較

8. TextRank算法與實(shí)踐

模塊二十三 隱馬爾科夫模型HMM

1. 概率計(jì)算問題

2. 前向/后向算法

3. HMM的參數(shù)學(xué)習(xí)

4. Baum-Welch算法詳解

5. Viterbi算法詳解

6. 隱馬爾科夫模型的應(yīng)用優(yōu)劣比較

模塊二十四 HMM實(shí)踐

1. 動(dòng)手自己實(shí)現(xiàn)HMM用于中文分詞

2. 多個(gè)語言分詞開源包的使用和過程分析

3. 文件數(shù)據(jù)格式UFT-8、Unicode

4. 停止詞和標(biāo)點(diǎn)符號(hào)對(duì)分詞的影響

5. 前向后向算法計(jì)算概率溢出的解決方案

6. 發(fā)現(xiàn)新詞和分詞效果分析

7. 高斯混合模型HMM

8. GMM-HMM用于股票數(shù)據(jù)特征提取

模塊二十五 課堂提問與互動(dòng)討論

張老師

張老師:阿里大數(shù)據(jù)高級(jí)專家,國內(nèi)資深的Spark、Hadoop技術(shù)專家、虛擬化專家,對(duì)HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生態(tài)系統(tǒng)中的技術(shù)進(jìn)行了多年的深入的研究,更主要的是這些技術(shù)在大量的實(shí)際項(xiàng)目中得到廣泛的應(yīng)用,因此在Hadoop開發(fā)和運(yùn)維方面積累了豐富的項(xiàng)目實(shí)施經(jīng)驗(yàn)。近年主要典型的項(xiàng)目有:某電信集團(tuán)網(wǎng)絡(luò)優(yōu)化、中國移動(dòng)某省移動(dòng)公司請(qǐng)賬單系統(tǒng)和某省移動(dòng)詳單實(shí)時(shí)查詢系統(tǒng)、中國銀聯(lián)大數(shù)據(jù)數(shù)據(jù)票據(jù)詳單平臺(tái)、某大型銀行大數(shù)據(jù)記錄系統(tǒng)、某大型通信運(yùn)營商全國用戶上網(wǎng)記錄、某省交通部門違章系統(tǒng)、某區(qū)域醫(yī)療大數(shù)據(jù)應(yīng)用項(xiàng)目、互聯(lián)網(wǎng)公共數(shù)據(jù)大云(DAAS)和構(gòu)建游戲云(Web Game Daas)平臺(tái)項(xiàng)目等。

我要報(bào)名

在線報(bào)名:Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)(天津)

亚洲美女尤物影院,美女高潮在线观看,最新国产精品拍自在线播放,国产在视频线精品视频www666

亚洲人成精品久久久久| 一区二区三区中文在线观看| 自拍偷拍亚洲综合| 精品久久久久久久久久久院品网| 日本欧美加勒比视频| 国产精品电影一区二区三区| 免费在线一区观看| 91丨porny丨在线| 色狠狠av一区二区三区| 日本久久电影网| 9久草视频在线视频精品| 国产一二三精品| 91福利在线播放| 久久亚洲精品小早川怜子| 国产剧情av麻豆香蕉精品| 日韩欧美亚洲另类制服综合在线| 色综合久久综合网欧美综合网| 欧美一区二区三区在线电影| 久久超碰97人人做人人爱| 中文字幕欧美日韩一区| 成人动漫一区二区在线| 国产日韩欧美高清| 久久er精品视频| 亚洲不卡一区二区三区| 日韩视频一区二区三区在线播放| 日韩一区在线免费观看| 美女脱光内衣内裤视频久久网站| 精品影视av免费| 亚洲国产精品天堂| 国产精品美女久久久久aⅴ国产馆| 欧美日韩电影在线| 国产成人av一区二区| 一区二区成人在线观看| 亚洲午夜一二三区视频| 亚洲综合免费观看高清完整版| 色综合久久中文综合久久牛| 国产一区二区福利视频| 国产精品资源站在线| aaa亚洲精品| 秋霞国产午夜精品免费视频| 亚洲黄色av一区| 精品中文字幕一区二区小辣椒| 国产精品69毛片高清亚洲| 国产福利一区在线观看| 激情五月播播久久久精品| 9191久久久久久久久久久| 国产大陆精品国产| 91久久奴性调教| 日韩成人一区二区三区在线观看| 久久精品一级爱片| 手机精品视频在线观看| 这里只有精品视频在线观看| 精品国产电影一区二区| 国产色婷婷亚洲99精品小说| 国内精品久久久久影院色| 日韩精品国产欧美| 日韩综合在线视频| 一区在线观看免费| 久久91精品久久久久久秒播| 亚洲免费视频中文字幕| 在线观看欧美日本| 午夜久久久久久久久久一区二区| 99久久免费精品| 久久99深爱久久99精品| 国产欧美精品一区aⅴ影院| 1区2区3区欧美| 在线观看亚洲专区| 亚洲国产一区二区在线播放| 懂色中文一区二区在线播放| 日韩欧美一级二级| 欧洲精品视频在线观看| 美女脱光内衣内裤视频久久网站| 26uuu精品一区二区在线观看| 美美哒免费高清在线观看视频一区二区| 国产福利不卡视频| 精品一区二区三区av| 日韩高清不卡一区二区三区| 91麻豆精品国产91久久久更新时间| 日本一二三四高清不卡| 久久久久久久久伊人| 精品国产一区二区国模嫣然| 在线播放一区二区三区| 欧美午夜精品理论片a级按摩| 一区在线观看免费| 亚洲欧洲精品一区二区精品久久久| 亚洲一区中文日韩| 99v久久综合狠狠综合久久| 一本大道av伊人久久综合| 久久精品人人做| 欧美男生操女生| 五月婷婷激情综合网| 色又黄又爽网站www久久| www.综合网.com| 日韩国产精品久久| 欧美一卡2卡三卡4卡5免费| 日韩欧美精品在线视频| www欧美成人18+| 亚洲色大成网站www久久九九| 欧美一区二区三区日韩视频| ㊣最新国产の精品bt伙计久久| av动漫一区二区| 国产午夜精品美女毛片视频| 蜜乳av一区二区三区| 丝袜亚洲精品中文字幕一区| 国产精品一二二区| 亚洲欧美日韩久久精品| 亚洲国产精品99久久久久久久久| 欧美日韩国产一区| 国产欧美日韩综合精品一区二区| 国产精品资源站在线| 一本色道综合亚洲| 国产高清精品在线| 日本精品免费观看高清观看| 一区二区三区美女视频| 欧美色窝79yyyycom| 欧美日韩精品免费| 国产99久久久国产精品潘金| 久久久综合网站| 国产精品卡一卡二| 国产一区欧美一区| www.欧美日韩国产在线| 国产精品久久久久影院| 亚洲老妇xxxxxx| 久久久亚洲高清| 粉嫩av一区二区三区在线播放| 国产精品传媒在线| 日韩精品1区2区3区| 一本色道久久综合狠狠躁的推荐| 九一九一国产精品| 亚洲国产精品久久久久婷婷884| 精品在线视频一区| 日韩av中文字幕一区二区| 一区二区三区欧美在线观看| 国产成人在线免费| 老司机精品视频导航| 在线视频中文字幕一区二区| 久久超碰97人人做人人爱| 色综合天天天天做夜夜夜夜做| 国产精品18久久久久久vr| 99国产精品视频免费观看| 不卡一区二区中文字幕| 国产日本一区二区| 国产丝袜美腿一区二区三区| 久久久久久久国产精品影院| 蜜臂av日日欢夜夜爽一区| 91网站在线播放| 欧美色精品在线视频| 国模冰冰炮一区二区| √…a在线天堂一区| 日韩精品一级中文字幕精品视频免费观看| 色伊人久久综合中文字幕| 另类小说一区二区三区| 成人av电影观看| 99精品欧美一区二区三区小说| 国产欧美久久久精品影院| 日韩av电影免费观看高清完整版在线观看| 国产精品一区在线观看你懂的| 国产麻豆精品95视频| 亚洲欧洲国产日本综合| 久久网站最新地址| 一区二区三区在线免费视频| 欧美一区二区黄色| 日韩精品一区二区三区在线播放| 久久亚洲捆绑美女| 国产精品大尺度| 91色乱码一区二区三区| 日韩av在线免费观看不卡| 成人欧美一区二区三区白人| 国产三级欧美三级日产三级99| 日本不卡一二三区黄网| 国产美女一区二区三区| jvid福利写真一区二区三区| 日本中文在线一区| 中文字幕欧美区| 在线观看国产91| 一区二区三区波多野结衣在线观看| 另类小说色综合网站| 成人高清视频在线观看| 欧美体内she精视频| 色婷婷久久久亚洲一区二区三区| 日本韩国视频一区二区| 丝袜美腿亚洲一区| 国产精品欧美极品| 欧美午夜在线观看| 久久99国产精品久久99果冻传媒| 亚洲一级二级在线| 国产视频视频一区| 91香蕉视频mp4| 国产性做久久久久久| 99视频热这里只有精品免费| 国产人成亚洲第一网站在线播放| 欧美色精品在线视频| 亚洲精品在线观看网站| 4438x亚洲最大成人网| 国产精品久久久久久久久久久免费看| 亚洲激情中文1区| 2020国产成人综合网| 亚洲成a天堂v人片| 久久se精品一区精品二区| 精品一区二区三区免费毛片爱|