亚洲美女尤物影院,美女高潮在线观看,最新国产精品拍自在线播放,国产在视频线精品视频www666

名課堂 - 企業(yè)管理培訓(xùn)網(wǎng)聯(lián)系方式

聯(lián)系電話:400-8228-121

值班手機(jī):18971071887

Email:Service@mingketang.com

企業(yè)管理培訓(xùn)分類導(dǎo)航

企業(yè)管理培訓(xùn)公開(kāi)課計(jì)劃

企業(yè)培訓(xùn)公開(kāi)課日歷

市場(chǎng)營(yíng)銷培訓(xùn)公開(kāi)課

市場(chǎng)營(yíng)銷培訓(xùn)內(nèi)訓(xùn)課程

熱門企業(yè)管理培訓(xùn)關(guān)鍵字

您所在的位置:名課堂>>公開(kāi)課>>市場(chǎng)營(yíng)銷培訓(xùn)公開(kāi)課

大數(shù)據(jù)建模與分析挖掘應(yīng)用

【課程編號(hào)】:MKT046456

【課程名稱】:

大數(shù)據(jù)建模與分析挖掘應(yīng)用

【課件下載】:點(diǎn)擊下載課程綱要Word版

【所屬類別】:市場(chǎng)營(yíng)銷培訓(xùn)

【時(shí)間安排】:2026年06月26日 到 2026年06月29日7800元/人

2025年11月12日 到 2025年11月15日7800元/人

2025年06月06日 到 2025年06月09日7800元/人

【授課城市】:廣州

【課程說(shuō)明】:如有需求,我們可以提供大數(shù)據(jù)建模與分析挖掘應(yīng)用相關(guān)內(nèi)訓(xùn)

【其它城市安排】:重慶 深圳 珠海 蘇州 成都 杭州 北京 上海 東莞

【課程關(guān)鍵字】:廣州大數(shù)據(jù)建模培訓(xùn),廣州大數(shù)據(jù)分析培訓(xùn)

我要報(bào)名

咨詢電話:
手  機(jī): 郵箱:
課程概述

大數(shù)據(jù)建模與分析挖掘技術(shù)已經(jīng)逐步地應(yīng)用到新興互聯(lián)網(wǎng)企業(yè)(如電子商務(wù)網(wǎng)站、搜索引擎、社交網(wǎng)站、互聯(lián)網(wǎng)廣告服務(wù)提供商等)、銀行金融證券企業(yè)、電信運(yùn)營(yíng)等行業(yè),給這些行業(yè)帶來(lái)了一定的數(shù)據(jù)價(jià)值增值作用。

本次課程面向有一定的數(shù)據(jù)分析挖掘算法基礎(chǔ)的工程師,帶大家實(shí)踐大數(shù)據(jù)分析挖掘平臺(tái)的項(xiàng)目訓(xùn)練,系統(tǒng)地講解數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)建模、挖掘模型建立、大數(shù)據(jù)分析與挖掘算法應(yīng)用在業(yè)務(wù)模型中,結(jié)合主流的Hadoop與Spark大數(shù)據(jù)分析平臺(tái)架構(gòu),實(shí)現(xiàn)項(xiàng)目訓(xùn)練。

結(jié)合業(yè)界使用最廣泛的主流大數(shù)據(jù)平臺(tái)技術(shù),重點(diǎn)剖析基于大數(shù)據(jù)分析算法與BI技術(shù)應(yīng)用,包括分類算法、聚類算法、預(yù)測(cè)分析算法、推薦分析模型等在業(yè)務(wù)中的實(shí)踐應(yīng)用,并根據(jù)講師給定的數(shù)據(jù)集,實(shí)現(xiàn)兩個(gè)基本的日志數(shù)據(jù)分析挖掘系統(tǒng),以及電商(或內(nèi)容)推薦系統(tǒng)引擎。

本課程基本的實(shí)踐環(huán)境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。

學(xué)員需要準(zhǔn)備的電腦最好是i5及以上CPU,4GB及以上內(nèi)存,硬盤(pán)空間預(yù)留50GB(可用移動(dòng)硬盤(pán)),基本的大數(shù)據(jù)分析平臺(tái)所依賴的軟件包和依賴庫(kù)等,講師已經(jīng)提前部署在虛擬機(jī)鏡像(VMware鏡像),學(xué)員根據(jù)講師的操作任務(wù)進(jìn)行實(shí)踐。

本課程采用技術(shù)原理與項(xiàng)目實(shí)戰(zhàn)相結(jié)合的方式進(jìn)行教學(xué),在講授原理的過(guò)程中,穿插實(shí)際的系統(tǒng)操作,本課程講師也精心準(zhǔn)備的實(shí)際的應(yīng)用案例供學(xué)員動(dòng)手訓(xùn)練。

培訓(xùn)受眾:

1.大數(shù)據(jù)分析應(yīng)用開(kāi)發(fā)工程師

2.大數(shù)據(jù)分析項(xiàng)目的規(guī)劃咨詢管理人員

3.大數(shù)據(jù)分析項(xiàng)目的IT項(xiàng)目高管人員

4.大數(shù)據(jù)分析與挖掘處理算法應(yīng)用工程師

5.大數(shù)據(jù)分析集群運(yùn)維工程師

6.大數(shù)據(jù)分析項(xiàng)目的售前和售后技術(shù)支持服務(wù)人員

課程收益:

1.本課程讓學(xué)員充分掌握大數(shù)據(jù)平臺(tái)技術(shù)架構(gòu)、大數(shù)據(jù)分析的基本理論、機(jī)器學(xué)習(xí)的常用算法、國(guó)內(nèi)外主流的大數(shù)據(jù)分析與BI商業(yè)智能分析解決方案、以及大數(shù)據(jù)分析在搜索引擎、廣告服務(wù)推薦、電商數(shù)據(jù)分析、金融客戶分析方面的應(yīng)用案例。

2.本課程強(qiáng)調(diào)主流的大數(shù)據(jù)分析挖掘算法技術(shù)的應(yīng)用和分析平臺(tái)的實(shí)施,讓學(xué)員掌握主流的基于大數(shù)據(jù)Hadoop和Spark、R的大數(shù)據(jù)分析平臺(tái)架構(gòu)和實(shí)際應(yīng)用,并用結(jié)合實(shí)際的生產(chǎn)系統(tǒng)案例進(jìn)行教學(xué),掌握基于Hadoop大數(shù)據(jù)平臺(tái)的數(shù)據(jù)挖掘和數(shù)據(jù)倉(cāng)庫(kù)分布式系統(tǒng)平臺(tái)應(yīng)用,以及商業(yè)和開(kāi)源的數(shù)據(jù)分析產(chǎn)品加上Hadoop平臺(tái)形成大數(shù)據(jù)分析平臺(tái)的應(yīng)用剖析。

3.讓學(xué)員掌握常見(jiàn)的機(jī)器學(xué)習(xí)算法,深入講解業(yè)界成熟的大數(shù)據(jù)分析挖掘與BI平臺(tái)的實(shí)踐應(yīng)用,并以客戶分析系統(tǒng)、日志分析和電商推薦系統(tǒng)為案例,串聯(lián)常用的數(shù)據(jù)挖掘技術(shù)進(jìn)行應(yīng)用教學(xué)。

課程大綱:

第一天業(yè)界主流的數(shù)據(jù)倉(cāng)庫(kù)工具和大數(shù)據(jù)分析挖掘工具

1.業(yè)界主流的基于Hadoop和Spark的大數(shù)據(jù)分析挖掘項(xiàng)目解決方案

2.業(yè)界數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)分析挖掘平臺(tái)軟件工具

3.Hadoop數(shù)據(jù)倉(cāng)庫(kù)工具Hive

4.Spark實(shí)時(shí)數(shù)據(jù)倉(cāng)庫(kù)工具SparkSQL

5.Hadoop數(shù)據(jù)分析挖掘工具M(jìn)ahout

6.Spark機(jī)器學(xué)習(xí)與數(shù)據(jù)分析挖掘工具M(jìn)Llib

7.大數(shù)據(jù)分析挖掘項(xiàng)目的實(shí)施步驟

大數(shù)據(jù)分析挖掘項(xiàng)目的數(shù)據(jù)集成操作訓(xùn)練

1.日志數(shù)據(jù)解析和導(dǎo)入導(dǎo)出到數(shù)據(jù)倉(cāng)庫(kù)的操作訓(xùn)練

2.從原始搜索數(shù)據(jù)集中抽取、集成數(shù)據(jù),整理后形成規(guī)范的數(shù)據(jù)倉(cāng)庫(kù)

3.數(shù)據(jù)分析挖掘模塊從大型的集中式數(shù)據(jù)倉(cāng)庫(kù)中訪問(wèn)數(shù)據(jù),一個(gè)數(shù)據(jù)倉(cāng)庫(kù)面向一個(gè)主題,構(gòu)建兩個(gè)數(shù)據(jù)倉(cāng)庫(kù)

4.同一個(gè)數(shù)據(jù)倉(cāng)庫(kù)中的事實(shí)表數(shù)據(jù),可以給多個(gè)不同類型的分析挖掘任務(wù)調(diào)用

5.去除噪聲

基于Hadoop的大型數(shù)據(jù)倉(cāng)庫(kù)管理平臺(tái)—HIVE數(shù)據(jù)倉(cāng)庫(kù)集群的多維分析建模應(yīng)用實(shí)踐

6.基于Hadoop的大型分布式數(shù)據(jù)倉(cāng)庫(kù)在行業(yè)中的數(shù)據(jù)倉(cāng)庫(kù)應(yīng)用案例

7.Hive數(shù)據(jù)倉(cāng)庫(kù)集群的平臺(tái)體系結(jié)構(gòu)、核心技術(shù)剖析

8.Hive Server的工作原理、機(jī)制與應(yīng)用

9.Hive數(shù)據(jù)倉(cāng)庫(kù)集群的安裝部署與配置優(yōu)化

10.Hive應(yīng)用開(kāi)發(fā)技巧

11.Hive SQL剖析與應(yīng)用實(shí)踐

12.Hive數(shù)據(jù)倉(cāng)庫(kù)表與表分區(qū)、表操作、數(shù)據(jù)導(dǎo)入導(dǎo)出、客戶端操作技巧

13.Hive數(shù)據(jù)倉(cāng)庫(kù)報(bào)表設(shè)計(jì)

14.將原始的日志數(shù)據(jù)集,經(jīng)過(guò)整理后,加載至Hadoop + Hive數(shù)據(jù)倉(cāng)庫(kù)集群中,用于共享訪問(wèn)

Spark大數(shù)據(jù)分析挖掘平臺(tái)實(shí)踐操作訓(xùn)練

15.Spark大數(shù)據(jù)分析挖掘平臺(tái)的部署配置

16.Spark數(shù)據(jù)分析庫(kù)MLlib的開(kāi)發(fā)部署

17.Spark數(shù)據(jù)分析挖掘示例操作,從Hive表中讀取數(shù)據(jù)并在分布式內(nèi)存中運(yùn)行

第二天聚類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用

18.聚類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

a)Canopy聚類(canopy clustering)

b)K均值算法(K-means clustering)

c)模糊K均值(Fuzzy K-means clustering)

d)EM聚類,即期望最大化聚類(Expectation Maximization)

e)以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

19.Spark聚類分析算法程序示例

分類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用

20.分類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用, 包括:

f)Spark決策樹(shù)算法實(shí)現(xiàn)

g)邏輯回歸算法(logistics regression)

h)貝葉斯算法(Bayesian與Cbeyes)

i)支持向量機(jī)(Support vector machine)

j)以上算法在Spark MLlib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

21.Spark客戶資料分析與給用戶貼標(biāo)簽的程序示例

22.Spark實(shí)現(xiàn)給商品貼標(biāo)簽的程序示例

23.Spark實(shí)現(xiàn)用戶行為的自動(dòng)標(biāo)簽和深度技術(shù)

關(guān)聯(lián)分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用

24.預(yù)測(cè)、推薦分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

k)Spark頻繁模式挖掘算法(parallel FP Growth Algorithm)應(yīng)用

l)Spark關(guān)聯(lián)規(guī)則挖掘(Apriori)算法及其應(yīng)用

m)以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場(chǎng)景中的應(yīng)用案例。

25.Spark關(guān)聯(lián)分析程序示例

第三天推薦分析挖掘模型與算法技術(shù)應(yīng)用

26.推薦算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:

a)Spark協(xié)同過(guò)濾算法程序示例

b)Item-based協(xié)同過(guò)濾與推薦

c)User-based協(xié)同過(guò)濾與推薦

d)交叉銷售推薦模型及其實(shí)現(xiàn)

回歸分析模型與預(yù)測(cè)算法

27.利用線性回歸(多元回歸)實(shí)現(xiàn)訪問(wèn)量預(yù)測(cè)

28.利用非線性回歸預(yù)測(cè)成交量和訪問(wèn)量的關(guān)系

29.基于R+Spark實(shí)現(xiàn)回歸分析模型及其應(yīng)用操作

30.Spark回歸程序?qū)崿F(xiàn)異常點(diǎn)檢測(cè)的程序示例

圖關(guān)系建模與分析挖掘及其鏈接分析和社交分析操作

31.利用Spark GraphX實(shí)現(xiàn)網(wǎng)頁(yè)鏈接分析,計(jì)算網(wǎng)頁(yè)重要性排名

32.實(shí)現(xiàn)信息傳播的社交關(guān)系傳遞分析,互聯(lián)網(wǎng)用戶的行為關(guān)系分析任務(wù)的操作訓(xùn)練

神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)算法模型及其應(yīng)用實(shí)踐

33.神經(jīng)網(wǎng)絡(luò)算法Neural Network的實(shí)現(xiàn)方法和挖掘模型應(yīng)用

34.基于人工神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)的訓(xùn)練過(guò)程

a)傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法

b)Deep Learning的訓(xùn)練方法

35.深度學(xué)習(xí)的常用模型和方法

a)CNN(Convolutional Neural Network)卷積神經(jīng)網(wǎng)絡(luò)

b)RNN(Recurrent Neural Network)循環(huán)神經(jīng)網(wǎng)絡(luò)模型

c)Restricted Boltzmann Machine(RBM)限制波爾茲曼機(jī)

36.基于Spark的深度學(xué)習(xí)算法模型庫(kù)的應(yīng)用程序示例

項(xiàng)目實(shí)踐

37.日志分析系統(tǒng)與日志挖掘項(xiàng)目實(shí)踐

a)Hadoop,Spark,ELK技術(shù)構(gòu)建日志數(shù)據(jù)倉(cāng)庫(kù)

b)互聯(lián)網(wǎng)微博日志分析系統(tǒng)項(xiàng)目

38.推薦系統(tǒng)項(xiàng)目實(shí)踐

a)電影數(shù)據(jù)分析與個(gè)性化推薦關(guān)聯(lián)分析項(xiàng)目

培訓(xùn)總結(jié)

39.項(xiàng)目方案的課堂討論,討論實(shí)際業(yè)務(wù)中的分析需求,剖析各個(gè)環(huán)節(jié)的難點(diǎn)、痛點(diǎn)、瓶頸,啟發(fā)出解決之道;完成講師布置的項(xiàng)目案例,鞏固學(xué)過(guò)的大數(shù)據(jù)分析挖掘處理平臺(tái)技術(shù)知識(shí)以及應(yīng)用技能

第四天學(xué)員考試與業(yè)界交流

周老師

周老師, 中國(guó)科學(xué)院通信與信息系統(tǒng)專業(yè)博士。北京郵電大學(xué)移動(dòng)互聯(lián)網(wǎng)與信息化實(shí)驗(yàn)室特聘研究員、對(duì)外經(jīng)貿(mào)大學(xué)信息學(xué)院特聘兼職教師、中國(guó)移動(dòng)集團(tuán)高級(jí)培訓(xùn)講師,長(zhǎng)期從事大數(shù)據(jù)、4G、移動(dòng)互聯(lián)網(wǎng)安全、管理及大數(shù)據(jù)精確營(yíng)銷等研究方向。國(guó)內(nèi)頂級(jí)信息系統(tǒng)架構(gòu)師,金牌講師,技術(shù)顧問(wèn),移動(dòng)開(kāi)發(fā)專家。擁有豐富的通信信息系統(tǒng)設(shè)計(jì)、開(kāi)發(fā)經(jīng)驗(yàn)及培訓(xùn)行業(yè)經(jīng)驗(yàn),先后為全國(guó)超過(guò)15家省移動(dòng)公司,超過(guò)30家地市移動(dòng)公司有過(guò)項(xiàng)目開(kāi)發(fā)合作及授課,擔(dān)任多個(gè)大型通信項(xiàng)目的總師。

張老師:阿里大數(shù)據(jù)高級(jí)專家,國(guó)內(nèi)資深的Spark、Hadoop技術(shù)專家、虛擬化專家,對(duì)HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生態(tài)系統(tǒng)中的技術(shù)進(jìn)行了多年的深入的研究,更主要的是這些技術(shù)在大量的實(shí)際項(xiàng)目中得到廣泛的應(yīng)用,因此在Hadoop開(kāi)發(fā)和運(yùn)維方面積累了豐富的項(xiàng)目實(shí)施經(jīng)驗(yàn)。近年主要典型的項(xiàng)目有:某電信集團(tuán)網(wǎng)絡(luò)優(yōu)化、中國(guó)移動(dòng)某省移動(dòng)公司請(qǐng)賬單系統(tǒng)和某省移動(dòng)詳單實(shí)時(shí)查詢系統(tǒng)、中國(guó)銀聯(lián)大數(shù)據(jù)數(shù)據(jù)票據(jù)詳單平臺(tái)、某大型銀行大數(shù)據(jù)記錄系統(tǒng)、某大型通信運(yùn)營(yíng)商全國(guó)用戶上網(wǎng)記錄、某省交通部門違章系統(tǒng)、某區(qū)域醫(yī)療大數(shù)據(jù)應(yīng)用項(xiàng)目、互聯(lián)網(wǎng)公共數(shù)據(jù)大云(DAAS)和構(gòu)建游戲云(Web Game Daas)平臺(tái)項(xiàng)目等。

我要報(bào)名

在線報(bào)名:大數(shù)據(jù)建模與分析挖掘應(yīng)用(廣州)

亚洲美女尤物影院,美女高潮在线观看,最新国产精品拍自在线播放,国产在视频线精品视频www666

日韩欧美国产高清| 国产99久久久国产精品免费看| 日韩av在线免费观看不卡| 久久九九国产精品| 自拍偷拍国产精品| 国产精品麻豆网站| 国产精品久久久久7777按摩| www.亚洲激情.com| 亚洲免费观看高清完整版在线观看| 亚洲精品视频在线观看网站| 日韩欧美的一区| 一区二区三区小说| 日本在线不卡一区| 国产成人精品午夜视频免费| 久久激五月天综合精品| 亚洲精品一区二区三区蜜桃下载| 欧美国产在线观看| 日韩欧美成人午夜| 在线视频你懂得一区二区三区| 国产精品麻豆99久久久久久| 日本一不卡视频| 亚洲成人一二三| 蜜桃视频一区二区三区在线观看| 国产精品自拍毛片| 国产精品69久久久久水密桃| 欧美日韩国产高清一区二区| 亚洲国产精品久久艾草纯爱| 亚洲人成伊人成综合网小说| 欧美精品一区二区三区高清aⅴ| 综合网在线视频| 丁香五精品蜜臀久久久久99网站| 欧美一卡二卡在线| 99久久国产综合色|国产精品| 国产一区二区导航在线播放| 日韩激情视频在线观看| 日本韩国视频一区二区| 国产福利精品一区| 亚洲h在线观看| 国产精品夜夜嗨| 精品国产污污免费网站入口| 国产无人区一区二区三区| 亚洲综合无码一区二区| 久久99精品国产麻豆不卡| 91麻豆精品秘密| 国产精品久久午夜| 在线播放中文字幕一区| 亚洲男女一区二区三区| 国产精品女上位| 欧美另类变人与禽xxxxx| 国产成人免费视频网站| 日韩欧美中文字幕一区| 色综合久久天天| 99久久精品情趣| av电影天堂一区二区在线观看| 日韩免费一区二区| 欧美国产精品中文字幕| 日本亚洲视频在线| 中文字幕乱码日本亚洲一区二区| 日本va欧美va欧美va精品| 美女视频黄a大片欧美| 韩国v欧美v亚洲v日本v| 国产精品白丝jk黑袜喷水| 蜜桃av噜噜一区二区三区小说| 丝袜美腿成人在线| 91浏览器打开| 麻豆一区二区99久久久久| 在线综合视频播放| 日韩欧美美女一区二区三区| 日韩视频在线观看一区二区| 久久久久久亚洲综合影院红桃| 国产精品久久二区二区| 亚洲精品成人精品456| 国产精品国模大尺度视频| 一区二区欧美精品| 国产 欧美在线| 精品国产精品网麻豆系列| 日韩精品最新网址| 欧美成人女星排名| 国产乱码精品一区二区三| 午夜精品在线视频一区| 国产一区二区三区视频在线播放| 久久精品国产精品亚洲红杏| 91在线观看成人| 色天天综合久久久久综合片| 国产精品一区二区久激情瑜伽| 91在线视频18| 精品成人佐山爱一区二区| 成人av网站免费观看| 久久久久亚洲综合| 日韩一二在线观看| 欧美一区二区日韩| 成人开心网精品视频| 久久影院午夜论| 国产色产综合产在线视频| 久久久久久电影| 亚洲激情中文1区| 久久天天做天天爱综合色| 日韩国产精品久久| 伊人色综合久久天天人手人婷| 色94色欧美sute亚洲线路一ni| 色婷婷综合视频在线观看| 国产精品系列在线播放| 激情综合网激情| 亚洲蜜臀av乱码久久精品蜜桃| 99re8在线精品视频免费播放| 91.成人天堂一区| 欧美一级二级三级蜜桃| 国产精品一区不卡| 91蜜桃网址入口| 欧美三级日韩三级国产三级| 99re66热这里只有精品3直播| 国产欧美久久久精品影院| 国产欧美一区二区三区在线看蜜臀| 精品国产髙清在线看国产毛片| 欧美成人伊人久久综合网| 午夜伦理一区二区| 色婷婷香蕉在线一区二区| 国产日韩精品一区| 欧美在线综合视频| 911精品产国品一二三产区| 青青草97国产精品免费观看| 爽爽淫人综合网网站| 国产成人精品影院| 91麻豆精品国产| 久久精品一级爱片| 91国产免费看| 欧美日韩中文精品| 国产欧美精品一区aⅴ影院| 亚洲图片欧美一区| 26uuu另类欧美亚洲曰本| 69堂成人精品免费视频| 国产人伦精品一区二区| 视频一区二区三区中文字幕| 91成人国产精品| 日韩专区中文字幕一区二区| 国产成人av一区| 日本aⅴ精品一区二区三区| 成人午夜视频免费看| 国产成人免费在线观看不卡| 中文字幕亚洲综合久久菠萝蜜| 蜜桃视频在线一区| 91视频免费观看| 久久久青草青青国产亚洲免观| 最新成人av在线| 日韩电影免费在线观看网站| 亚洲欧美在线观看| 亚洲婷婷综合色高清在线| 日韩一区二区三区电影在线观看| 色婷婷国产精品久久包臀| 91精品国产手机| 三级影片在线观看欧美日韩一区二区| 久久精品国产999大香线蕉| 国产99精品视频| 国内精品久久久久影院薰衣草| 国产一区二区三区香蕉| 精品一区二区在线免费观看| 国产精品二区一区二区aⅴ污介绍| 久久网站热最新地址| 欧美不卡一二三| 日本在线不卡视频| 麻豆91在线看| 7777精品久久久大香线蕉| 91在线免费播放| 风间由美中文字幕在线看视频国产欧美| 久久69国产一区二区蜜臀| 欧美精品在线一区二区| 亚洲精品一二三四区| 99久久伊人久久99| 欧美天堂一区二区三区| 亚洲综合图片区| 精东粉嫩av免费一区二区三区| 国产精品日产欧美久久久久| 蜜芽一区二区三区| 自拍偷拍欧美激情| 精品一区二区三区久久久| 婷婷久久综合九色综合伊人色| 亚洲444eee在线观看| 日本一不卡视频| 中文一区二区在线观看| 日韩一本二本av| 成人a级免费电影| 蜜臀av性久久久久蜜臀av麻豆| 中文字幕亚洲电影| 久久久久久99久久久精品网站| 亚洲va在线va天堂| 国产成人亚洲综合a∨婷婷| 中文字幕高清不卡| 自拍偷拍国产亚洲| 日韩欧美高清在线| 欧美日韩一区国产| 性做久久久久久免费观看欧美| 国产日韩精品一区二区三区在线| 精品少妇一区二区| 亚洲电影在线免费观看| 亚洲日本青草视频在线怡红院| 亚洲精品在线观看视频| 蜜臀精品久久久久久蜜臀| 国产精品美女久久久久aⅴ国产馆| 欧美精品一区二区高清在线观看| 成人黄动漫网站免费app|